If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-40=8
We move all terms to the left:
X^2+4X-40-(8)=0
We add all the numbers together, and all the variables
X^2+4X-48=0
a = 1; b = 4; c = -48;
Δ = b2-4ac
Δ = 42-4·1·(-48)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{13}}{2*1}=\frac{-4-4\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{13}}{2*1}=\frac{-4+4\sqrt{13}}{2} $
| -2x-4x-28=15x-13 | | 24b=240 | | 3x+8=7.2+5x | | x+.5x=750 | | n+36=63 | | 8n-3=67 | | b(b+3)=-12 | | 456=-19y | | F(n)=9(2)n-1 | | t+203=762 | | 11x-17=-9x-11 | | 4c-7+5=24 | | 2(4x+1)=6x-10 | | v+406=-389 | | -4+x=10 | | y+-3=30 | | n-54=117 | | 9c=-459 | | 7n-9=82 | | p^2+8p-128=0 | | 3x+32°+x+2x-12°=180° | | y^-64=0 | | -3(x+10)=-12 | | -9x-98=5x | | (1+-7n)-8=384 | | 289=y-63 | | .2d+4=10+2.5d2d+4=10+2.5d | | 421=b+324 | | –1+7w=–5+9w | | 83+6x+7=15x | | 3(3x+5)-x=5x+15 | | 21r=189 |